

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.nxp.com, http://www.nexperia.com/, http://www.nexperia.com/, use http://www.nexperia.com/

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

PHD97NQ03LT

N-channel TrenchMOS logic level FET

Rev. 01 — 24 March 2009

Product data sheet

1. Product profile

1.1 General description

Logic level N-channel enhancement mode Field-Effect Transistor (FET) in a plastic package using TrenchMOS technology. This product is designed and qualified for use in computing, communications, consumer and industrial applications only.

1.2 Features and benefits

- Fast switching
- Lead-free packing
- Logic level threshold

- Low on-state resistance
- Suitable for high frequency applications due to fast switching characteristics

1.3 Applications

- Computer motherboard high frequency DC-to-DC convertors
- Switched-mode power supplies
- Voltage regulators

1.4 Quick reference data

Table 1. Quick reference

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DS}	drain-source voltage	T _j ≥ 25 °C; T _j ≤ 175 °C	-	-	25	V
I_D	drain current	$T_{mb} = 25 ^{\circ}\text{C}; V_{GS} = 10 \text{V};$ see <u>Figure 1</u> ; see <u>Figure 3</u>	-	-	75	Α
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>	-	-	107	W
Dynamic characteristics						
Q_{GD}	gate-drain charge	$V_{GS} = 4.5 \text{ V}; I_D = 25 \text{ A};$ $V_{DS} = 12 \text{ V}; \text{ see } \frac{\text{Figure 9}}{\text{Figure 10}};$	-	1.9	-	nC
Static ch	aracteristics					
R _{DSon}	drain-source on-state resistance	$V_{GS} = 10 \text{ V}; I_D = 25 \text{ A};$ $T_j = 25 \text{ °C}; \text{ see } \frac{\text{Figure 7}}{\text{see } \frac{\text{Figure 8}}{}}$	-	5.3	6.3	mΩ

Pinning information

Pinning information Table 2.

Pin	Symbol	Description	Simplified outline	Graphic symbol
1	G	gate		_
2	D	drain	mb	D
3	S	source		$G \longrightarrow A$
mb D	D	mounting base; connected to drain	1 3	mbb076 S
			SOT428 (SC-63; DPAK)	

Ordering information 3.

Table 3. **Ordering information**

Type number			
	Name	Description	Version
PHD97NQ03LT	SC-63; DPAK	plastic single-ended surface-mounted package (DPAK); 3 leads (one lead cropped)	SOT428

Limiting values

Table 4. **Limiting values**

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DS}	drain-source voltage	T _j ≥ 25 °C; T _j ≤ 175 °C	-	25	V
V_{DGR}	drain-gate voltage	$T_j \ge 25$ °C; $T_j \le 175$ °C; $R_{GS} = 20$ kΩ	-	25	V
V_{GS}	gate-source voltage		-20	20	V
I _D	drain current	V _{GS} = 10 V; T _{mb} = 100 °C; see <u>Figure 1</u>	-	69	Α
		V _{GS} = 10 V; T _{mb} = 25 °C; see <u>Figure 1</u> ; see <u>Figure 3</u>	-	75	Α
I _{DM}	peak drain current	$t_p \le 10 \mu\text{s}; \text{ pulsed}; T_{mb} = 25 ^{\circ}\text{C}; \text{ see } \frac{\text{Figure 3}}{}$	-	300	Α
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>	-	107	W
T _{stg}	storage temperature		-55	175	°C
Tj	junction temperature		-55	175	°C
Source-dr	ain diode				
Is	source current	$T_{mb} = 25 ^{\circ}C$	-	75	Α
I _{SM}	peak source current	$t_p \le 10 \ \mu s$; pulsed; $T_{mb} = 25 \ ^{\circ}C$	-	240	Α
Avalanche	ruggedness				
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	$V_{GS} = 10 \text{ V; } T_{j(init)} = 25 \text{ °C; } I_D = 35 \text{ A; } V_{sup} \leq 25 \text{ V;}$ unclamped; $t_p = 0.1 \text{ ms; } R_{GS} = 50 \Omega$	-	60	mJ

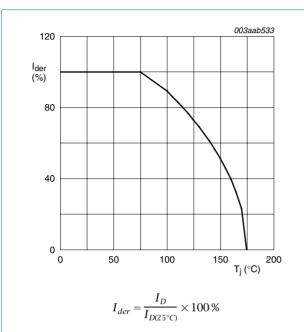
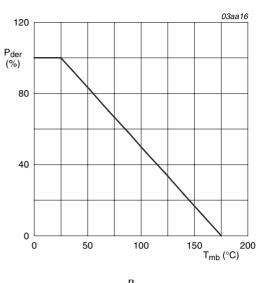
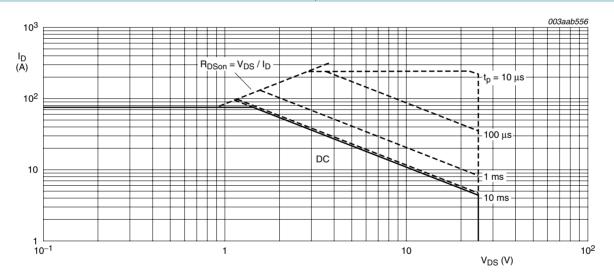




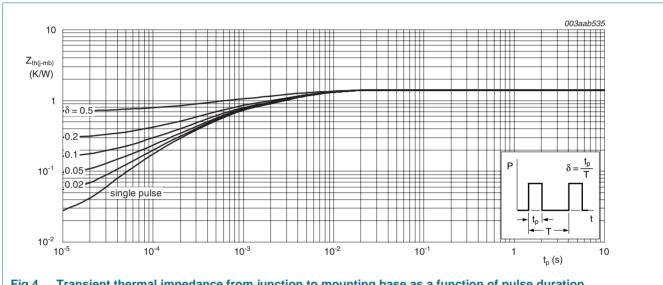
Fig 1. Normalized continuous drain current as a function of mounting base temperature

$$P_{der} = \frac{P_{tot}}{P_{tot(25^{\circ}C)}} \times 100\%$$

Fig 2. Normalized total power dissipation as a function of mounting base temperature

 $T_{mb} = 25 \,^{\circ}C; I_{DM}$ is single pulse

Fig 3. Safe operating area; continuous and peak drain currents as a function of drain-source voltage


3 of 12

Thermal characteristics 5.

Thermal characteristics Table 5.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
$R_{th(j-mb)}$	thermal resistance from junction to mounting base	see <u>Figure 4</u>		-	-	1.4	K/W
$R_{th(j-a)}$	thermal resistance from junction to ambient	minimum footprint	[1]	-	75	-	K/W

[1] Mounted on a printed-circuit board; vertical in still air

Transient thermal impedance from junction to mounting base as a function of pulse duration

6. Characteristics

Table 6. Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Static cha	racteristics					
V _{(BR)DSS}	drain-source	$I_D = 250 \mu A; V_{GS} = 0 V; T_j = 25 °C$	25	-	-	V
	breakdown voltage	I _D = 250 μA; V _{GS} = 0 V; T _j = -55 °C	22	-	-	V
$V_{GS(th)}$	gate-source threshold voltage	$I_D = 1$ mA; $V_{DS} = V_{GS}$; $T_j = 25$ °C; see <u>Figure 5</u> ; see <u>Figure 6</u>	1.3	1.7	2.15	V
		I_D = 1 mA; V_{DS} = V_{GS} ; T_j = 175 °C; see <u>Figure 5</u>	0.7	-	-	V
		$I_D = 1$ mA; $V_{DS} = V_{GS}$; $T_j = -55$ °C; see Figure 5	-	-	2.6	V
DSS	drain leakage current	$V_{DS} = 25 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	-	1	μΑ
I _{GSS}	gate leakage current	$V_{GS} = 16 \text{ V}; V_{DS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	-	100	nA
		$V_{GS} = -16 \text{ V}; V_{DS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	-	100	nA
R _{DSon}	drain-source on-state resistance	$V_{GS} = 10 \text{ V}$; $I_D = 25 \text{ A}$; $T_j = 175 \text{ °C}$; see Figure 7; see Figure 8	-	10.1	12	mΩ
		$V_{GS} = 4.5 \text{ V}; I_D = 25 \text{ A}; T_j = 25 ^{\circ}\text{C};$ see <u>Figure 7</u> ; see <u>Figure 8</u>	-	8	10.6	mΩ
		$V_{GS} = 10 \text{ V}$; $I_D = 25 \text{ A}$; $T_j = 25 \text{ °C}$; see Figure 7; see Figure 8	-	5.3	6.3	mΩ
I _{DSS}	drain leakage current	$V_{DS} = 25 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 175 ^{\circ}\text{C}$	-	-	100	μΑ
R_{G}	gate resistance	f = 1 MHz	-	1.5	-	Ω
Dynamic	characteristics					
Q _{G(tot)} total gate charge		$I_D = 25 \text{ A}$; $V_{DS} = 12 \text{ V}$; $V_{GS} = 4.5 \text{ V}$; see Figure 9; see Figure 10	-	11.7	-	nC
		$I_D = 0 \text{ A}; V_{DS} = 0 \text{ V}; V_{GS} = 4.5 \text{ V}$	-	10.2	-	nC
Q_{GS}	gate-source charge	$I_D = 25 \text{ A}; V_{DS} = 12 \text{ V}; V_{GS} = 4.5 \text{ V};$	-	6.2	-	nC
Q _{GS1}	pre-threshold gate-source charge	see <u>Figure 9</u> ; see <u>Figure 10</u>	-	3.4	-	nC
Q _{GS2}	post-threshold gate-source charge		-	2.8	-	nC
Q_{GD}	gate-drain charge		-	1.9	-	nC
$V_{GS(pl)}$	gate-source plateau voltage	$I_D = 25 \text{ A}$; $V_{DS} = 12 \text{ V}$; see <u>Figure 9</u> ; see <u>Figure 10</u>	-	3.1	-	V
C _{iss}	input capacitance	$V_{DS} = 12 \text{ V}; V_{GS} = 0 \text{ V}; f = 1 \text{ MHz};$ $T_j = 25 \text{ °C}; \text{ see } \frac{\text{Figure 11}}{\text{ Company 1}}$	-	1570	-	pF
		$V_{DS} = 0 \text{ V}; V_{GS} = 0 \text{ V}; f = 1 \text{ MHz};$ $T_j = 25 \text{ °C}$	-	1800	-	pF
Coss	output capacitance	$V_{DS} = 12 \text{ V}; V_{GS} = 0 \text{ V}; f = 1 \text{ MHz};$	-	380	-	pF
C _{rss}	reverse transfer capacitance	T _j = 25 °C; see <u>Figure 11</u>	-	160	-	pF

Table 6. Characteristics ... continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$t_{d(on)}$	turn-on delay time	V_{DS} = 12 V; R_L = 0.5 Ω ; V_{GS} = 4.5 V;	-	18	-	ns
t _r	rise time	$R_{G(ext)} = 5.6 \Omega$	-	33	-	ns
t _{d(off)}	turn-off delay time		-	20	-	ns
t _f	fall time		-	12	-	ns
Source-di	rain diode					
V_{SD}	source-drain voltage	$I_S = 25 \text{ A}; V_{GS} = 0 \text{ V}; T_j = 25 ^{\circ}\text{C};$ see <u>Figure 12</u>	-	0.87	1.2	V
t _{rr}	reverse recovery time	$I_S = 20 \text{ A}; dI_S/dt = -100 \text{ A/}\mu\text{s}; V_{GS} = 0 \text{ V};$	-	38	-	ns
Q _r	recovered charge	$V_{DS} = 30 \text{ V}$	-	14	-	nC

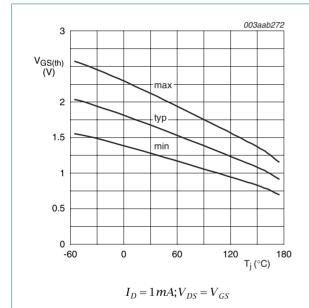


Fig 5. Gate-source threshold voltage as a function of junction temperature

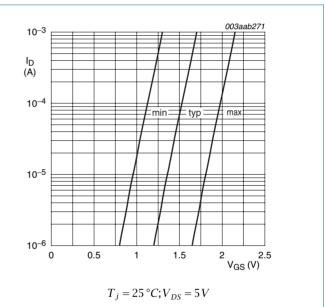


Fig 6. Sub-threshold drain current as a function of gate-source voltage

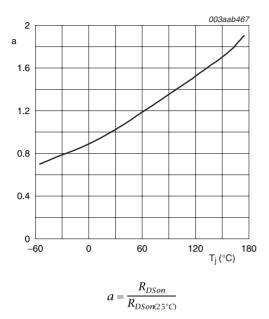


Fig 7. Normalized drain-source on-state resistance factor as a function of junction temperature

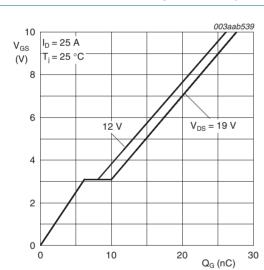
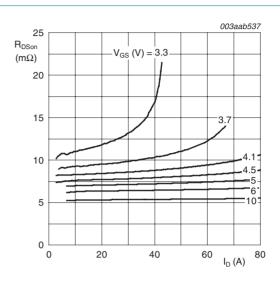



Fig 9. Gate-source voltage as a function of gate charge; typical values

 $I_D = 25A$; $V_{DS} = 12V$ and 19V

 $T_j = 25^{\circ}C$

Fig 8. Drain-source on-state resistance as a function of drain current; typical values

Fig 10. Gate charge waveform definitions

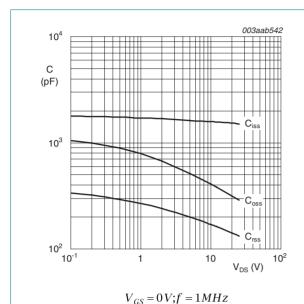


Fig 11. Input, output and reverse transfer capacitances as a function of drain-source voltage; typical values

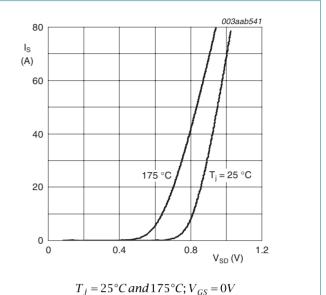


Fig 12. Source current as a function of source-drain voltage; typical values

8 of 12

7. Package outline

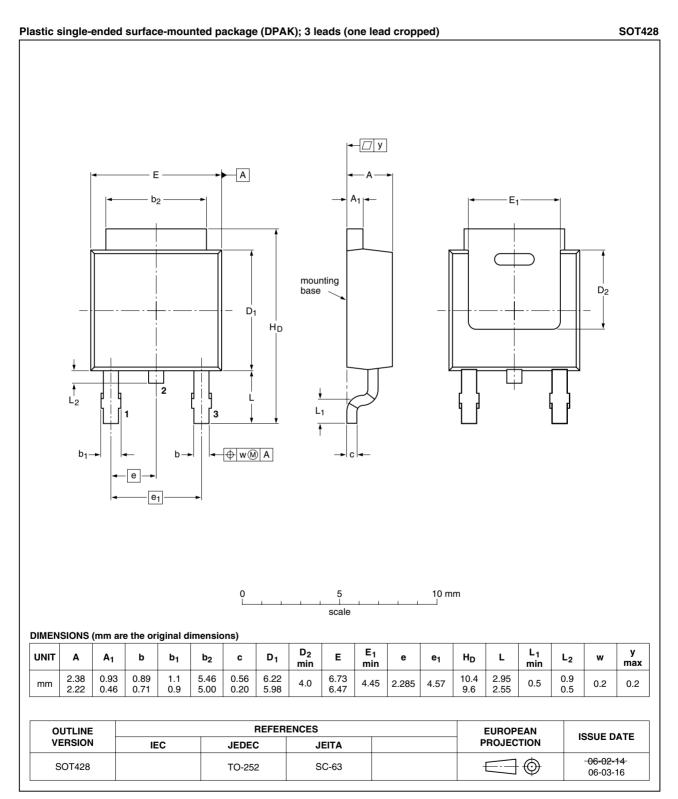


Fig 13. Package outline SOT428 (DPAK)

8. Revision history

Table 7. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
PHD97NQ03LT_1	20090324	Product data sheet	-	-

9. Legal information

9.1 Data sheet status

Document status [1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

9.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

9.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

9.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

TrenchMOS — is a trademark of NXP B.V.

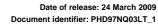
10. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

11. Contents

1	Product profile
1.1	General description1
1.2	Features and benefits1
1.3	Applications1
1.4	Quick reference data1
2	Pinning information2
3	Ordering information2
4	Limiting values2
5	Thermal characteristics4
6	Characteristics5
7	Package outline
В	Revision history10
9	Legal information11
9.1	Data sheet status
9.2	Definitions11
9.3	Disclaimers
9.4	Trademarks11
10	Contact information11


Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

© NXP B.V. 2009.

All rights reserved.

